Overview of GCOM

- JAXA has been proposing the Global Change Observation Mission (GCOM).
- GCOM will be:
 - Follow-on mission of ADEOS-II and AMSR-E on EOS Aqua.
 - Part of Japanese contribution to the GEOSS concept through satellite long-term climate change observation.

GCOM-W & -C characteristics (TBD)					
Design	GCOM-C				
Orbit (TBD)	 Sun-synchronous Altitude: 699.6km Inclination: 98.19deg Ascending local time: 13:30 	 Sun-synchronous Altitude: 798km Inclination: 99.36deg Descending local time: 10:30 			
Instruments	• AMSR follow-on Microwave imager				
Launch Date	JFY 2010	JFY 2011			
Mission Life	5 years (x3 satellites; total 13 years)				
Launch Vehicle	H-IIA				

- GCOM consists of:
 - 2 medium size satellites: GCOM-W and GCOM-C
 - Multiple consecutive generations (e.g., 3 generations) with one year overlap to realize long-term (~ 15 years) homogeneous data records.
- GCOM-W1 (first generation) will carry the follow-on instrument of the Advanced Microwave Scanning Radiometer (AMSR).

Overview of GCOM-W/AMSR F/O

Overview of AMSR follow-on instrument (sensor unit) from concept study. Left and center figures indicate deployed condition of main reflector. Right figure shows stowed position.

Center frequency [GHz]	Band width [MHz]	Polarization	Beam width [deg] (Ground res. [km])	Sampling interval [km]
6.925 (TBD)	350	V and H	1.8 (35 x 62)	
10.65	100		1.2 (24 x 42)	
18.7	200		0.65 (14 x 22)	10
23.8	400		0.75 (15 x 26)	
36.5	1000		0.35 (7 x 12)	
89.0	3000		0.15 (3 x 5)	5

• Major Requirements

- Realize the earliest launch date to keep AMSR-E observation.
- Keep Midori-II AMSR performance and (except 50GHz channels).
- Improve calibration (particularly hot load) accuracy.
- Mitigate RFI at C-band channels.

Other discussions (not adopted this time)

- Higher frequency channels for snow detection (e.g. 150, 183GHz).
- Polarimetric channels (U and V at 18, 36GHz) for wind direction.
- Enhancement of spatial resolution at lower frequency.

AMSR F/O instrument

- Deployable reflector system with diameter of 2.0 meters.
- Frequency channel set identical to that of AMSR-E.
- Improvement of HTS (hot load).
- Frequency shift and/or sub-band configuration will be investigated.

Major sensor parameters derived by assuming an orbit altitude of 700 km (same as Aqua satellite) and 2m antenna size.

Recent Status: Project

Project status

- In the summer of 2006, GCOM-W1 (first generation)
 plan was proposed to the Space Activities Commission
 of Japan (SAC) and approved to proceed to the next
 phase (research and development phase).
- GCOM-W1 will not carry the microwave scatterometer.
- JAXA is preparing for the internal review process to launch the formal GCOM-W1 project from JFY 2007.
- Current target launch year is JFY 2010.

R&D status

 JAXA internal teams and satellite manufacturers have been working on concept design of satellite system.

Recent Status: AMSR F/O

- R&D status (cont'd)
 - For the AMSR follow-on instrument, investigation and prototyping have been started for critical items.
 - Improvement of hot-load calibration system (heating mechanism changed)
 - Vacuum vapor deposition test of main reflector
 - C-band RFI mitigation issue (see next)
 - Aging effect of diode detectors (1000-hr burn in test)
 - Evaluation of replacement for the end-oflife parts (e.g., 89GHz MMIC)
 - Interface design between AMSR followon and GCOM-W satellite.

Test samples of CFRP-Honeycomb sandwich panel. Before vapor deposition (upper) and after vapor deposition (lower) were shown.

Resent Status: RFI issue

Examples of RFI spectra obtained on November 28 (Kanto Koshinetsu area). Bandwidths of AMSR-E and WindSat are indicated on the figure. It seems that less RFI signals in WindSat bandwidth is consistent with satellite data.

- Due to the resource limitation, 2 subbands are now being discussed for AMSR F/O instrument.
- 6.9GHz (350MHz) + 7.3GHz (350MHz) experimental channel
 - Probably no improvement of RFI areas, but RFI flagging is possible.
 - Safer to keep current success of 6.925GHz for measuring SST.
- 7.3GHz center, 175MHz 2 sub-bands
 - Potential to decrease RFI, but RFI in this frequency range is uncertain.
 - Possible contradiction with RR footnote.